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SIMULATING MARVEL WITH THE STUN CODE

L. A. Glenn †

Abstract

MARVEL, a nuclear-driven shock-tube experiment, consisted of a 2.2 kiloton nuclear

explosive detonated 176 meters underground at one end of a 122-meter long, 1-meter

diameter horizontal tunnel. Vaporization of material in the immediate vicinity of the

explosive provided the source of high-energy driver gas. The driven gas was the am-

bient atmospheric air in the tunnel. The event was staged as an experimental and

calculational study of the time dependent flow of energy in the tunnel and surrounding

alluvium. In this report we describe the derivation and implementation of a ’1-3/4D’

hydrocode to simulate the experiment. Calculations were performed to study the in-

fluence of energy transport to, and mass ablation from, the walls of the tunnel on the

shock velocity.

†Lawrence Livermore National Laboratory
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INTRODUCTION

The MARVEL event was a nuclear driven shock tube experiment. A 2.2 kt nuclear de-

vice was detonated at one end of a 1-meter diameter, 122-meter long horizontal under-

ground tunnel that was excavated 176 meters below ground level in Yucca Flat at the

Nevada Test Site. The purpose of the experiment, which took place on September 20,

1967, was to study the hydrodynamic flow of energy and debris down a tunnel from

a nuclear explosion (Thomsen 1978). One of the prime measurements was the shock

arrival time. Both piezoelectric crystal gages and slifers† were employed for this pur-

pose and high quality data were obtained. Hydrodynamic simulations of the experiment

were not in accord with the experimental results, the measured time-of-arrival (TOA) at

the end of the tunnel being far less than predicted. Initial calculations showed that the

discrepancy might be accounted for by taking into account wall ablation, but a detailed

model for accomplishing this was beyond the state-of-the-art at the time.

Recent 2D calculations performed with the GEODYN (Lomov 1999) and RAPTOR (Howell

and Greenough 1999) codes have confirmed the earlier simulations. Neither of these

codes is capable of ab initio description of the wall ablation process, which is driven

mainly by radiation transport from the explosion products. The main problem derives

from the fact that the mean free path for photon transport in the cold rock wall is esti-

mated to be of the order of 10−7 m. Accurate calculation of wall transport thus requires

extremely high radial resolution. Constraints on the maximum zonal aspect ratio then

translate into zone numbers that are impractically large, even for the massively par-

allel ASCI systems currently available. A sub-grid model of the ablation process has

been devised and is in the process of being implemented and tested in the RAPTOR

code. However, even with this simplification, the resulting calculations are expected

to be quite time consuming. In what follows we describe the implementation of a still

simpler model in the ′1− 3/4D′ S(phere and) TUN(nel) code. Much of the conceptual

basis for the STUN code derives from earlier work by Glenn (1982, 1990).

†an electrical oscillator attached to a long piece of coaxial cable; the shock

shorts out the cable, thereby changing the frequency of oscillation and giving a contin-

uous record of shock position with time
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MODEL DESCRIPTION

A schematic of the MARVEL set-up is shown in figure 1.

Figure 1. MARVEL set-up schematic. The initial configuration is defined in red.

The shaded outline sketches the approximate geometry when the

shock has just arrived at the end of the tunnel.

In the region immediately surrounding the explosive source the flow is essentially spher-

ical, with explosion products (possibly surrounded and mixed with ambient air) forcing

the surrounding rock into a cavity. The expanding cavity is connected to the tunnel, in

which the main flow is essentially axial. To the extent that these simplifications prevail,

the equations of motion describing this system can be written:

d(ρA)
dt

+ ρA∂u
∂x

= αSφ/Hv (1)

du
dt

+ 1
ρ
∂σX
∂x

+ (σX − σT)
ρA

∂A
∂x

+ Fu|u| = 0 (2)

d(e+ q + 1
2u

2)
dt

+ 1
ρA

∂(σXuA)
∂x

= 0 (3)

ρ, u, and e are respectively the mass density, particle velocity and specific internal

energy, and σX and σT are the axial and transverse components of stress. The operator

d
dt

≡ ∂
∂t
+w ∂

∂x
(4)

and

w = u− s (5)

w is the particle velocity relative to a local coordinate frame moving with velocity s(x, t),

so that equations (1) - (3) define an Eulerian representation when s = 0 and Lagrangian
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flow when s = u; in general s is arbitrary and may be chosen to improve computational

efficiency and accuracy. In particular, for the present application, material interfaces

(source/air, air/rock, source/rock) are taken to be Lagrangian. An effective algorithm

is to choose s such that there is uniform resolution between Lagrangian faces by using

accordion–like tesselation.

The flow cross section inside the rock walls is the key to the representation; specifically:

A(x) =
{

4πx2, for x ≤ R(t);
π[r(x, t)]2, for x > R,

(6)

subject to the initial conditions: r(x,0) = R(0) = R0, where R0 is the initial tunnel

radius. The technique for estimating R(t) and r(x, t) is described later below.

Hv in eq. (1) is the specific cohesive energy of the tunnel wall material, S = 2πr is the

wall surface per unit length, φ is the rate of energy delivered to the wall per unit area,

and α is the fraction of the resultant ablated mass that is mixed with the flow.

The last term in equation (2) accounts approximately for wall drag in the tunnel, with

the drag parameter defined as:

F =
{
f/4r , for x > R(t);
0, otherwise

(7)

where the friction factor, f , is taken to be a function of the Reynolds number, based on

the local diameter. For laminar flow (Re = 2ru/ν < 2500; ν is the kinematic viscosity),

we use Stokes’ law:

f = 64/Re (8)

whereas when the flow is turbulent (Re ≥ 2500), which is almost always the case in the

tunnel, the Prandtl–Karman relation is assumed to apply:

f−1/2 = 2 log10[Ref 1/2]− 0.8 (9)

Mach and Prandtl number effects on the wall drag are thought to be of lesser importance

and were ignored.

The equation of state (EOS) has the general form:

p = (σX + 2σT)/3 = p(ρ, e) (10)

The right–hand side of (9) may be analytic or tabular. In the calculations described

below, LEOS tables were used throughout. The deviatoric stress components sX = σX−p
and sT = σT −p are obtained from a constitutive model that accounts for pressure and

strain hardening of the yield strength, porosity, melting, damage due to distortional

deformation and many other effects (Rubin et al. 2000).
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The rate of energy per unit area delivered to the walls of the tunnel is simply:

φ =
{
β[h(T − TS)+ ac4 ε(T 4 − T 4

S )], for x > R(t);
0, otherwise.

(11)

TS is the surface temperature of the tunnel walls, a is the radiation density constant, c

is the speed of light, and the emissivity coefficient, ε, is approximated by:

ε = (3
4
ρKrr)

−1

(12)

where Kr = Kr(ρ, T) is the Rosseland mean opacity. Equation (12) is appropriate in

the diffusion approximation, i.e., where ε << 1, but does not take into account strong

crossflow (axial motion) near the wall. In this case, as will be seen below, it may only

provide a lower bound for ε, whose upper bound is the black body value of unity.

The binary coefficient, β, takes the value 0 or 1 depending on whether or not energy

transport to the walls is to be considered.

The convective heat transfer coefficient, h, consistent with eq. (9) is simply:

h = 0.0384 ρcpu(Red)−1/4 (13)

where cp is the specific heat. For T >> TS , the convective term in eq. (11) is generally

negligible, but it has been included for completeness.

With these definitions, the rate of energy transport to the walls per unit mass of flow

in the tunnel is:
dq
dt

= 2φ
ρr

(14)

To determine R(t), we simply solve the equations of motion in spherical coordinates

for the exploding source in a rock cavity, with F = φ = 0. The initial conditions for this

problem are: e = W/mS,ρ = mS/[(4/3)πr 3
S ], where W is the device yield (2.2 kt for

MARVEL),mS is the mass of the device canister (≈ 1.6 metric tons), and rS ≤ R(0) is the

source radius. For our purposes, the source is taken to be iron, which represents most

of the canister/device mass. The initial pressure in the air and in the rock is ambient

and the initial velocity is zero everywhere. To account for the presence of the tunnel,

however, requires placing a mass sink at the expanding cavity radius, R(t), since source

material and air escape the spherical system once the device explodes. The mass sink

is provided by simultaneous solution of the ′1−1/2D′ variable area problem described

by eq. 1-13 with the same initial conditions. The mass flow rate per unit area at R(t),

ρ(x = R, t)u(x = R, t), from this problem constitutes the mass sink for the spherical

problem while the cavity boundary, R(t), supplies the boundary condition for the axial

flow problem.
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The model described thus far accounts for the motion of the cavity walls immediately

surrounding the device, but not the walls of the cylindrical tunnel. The radial motion of

the tunnel walls could be handled in a manner similar to that employed for the cavity

(by simultaneously solving a set of 1D problems in cylindrical symmetry) but, as will be

demonstrated below, this motion is less significant and a much simplified approach was

used. In the strong-shock approximation, the amplitude of the velocity vector normal

to the (tunnel) wall surface at time t is:

ż(x, t) = p(x, t)/ρwcsw. (15)

Equation (15) will overpredict the wall motion at late times; to correct for this, the

actual value of ż employed was the minimum of the value derived from eq. (15) and

that calculated from the momentum conserving expression:

∫
p(x, t)dt = ρwzż, (16)

where ρw is the density of the rock and csw is the shock velocity as determined from

the Hugoniot. In the finite difference scheme, the implementation is via a split operator

approach, similar to the manner in which eq. (11) above is employed to compute the

wall ablation. For each wall node at time tk the wall velocity amplitude is evaluated

via eqs. (15) and (16). Together with the stored wall coordinates, this allows the wall

velocity vector to be calculated, the wall displacement components to be updated, and

new zonal volumes to be computed. The interior fluid density is then recalculated and,

finally, the pdV work done by the fluid on the walls is incremented and stored and the

specific internal energy of the fluid is decreased accordingly. It should be noted that

a more complicated approach was adopted previously to analyze MARVEL (Crowley et

al. 1970) in which a fully 2D axisymmetric code was employed to determine the tunnel

boundary conditions, together with a quasi-1D solution of the axial flow in the tunnel.

The present approach is much faster and produces comparable results.

CALCULATIONS

Effect of Tunnel Wall Motion on Shock TOA

Figure 2 shows the computed shock TOA with and without the implementation of equa-

tions (15) and (16), compared with the experimental results. In neither of these calcu-

lations was wall heating taken into account, so that β was set to zero in eq. (11). It is

clear that the motion of the tunnel wall downstream of the expanding cavity region has

relatively little effect on the shock trajectory in the tunnel, thus justifying the approx-

imate treatment of this motion. In both cases, the TOA at the end of the tunnel is far
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too short; with rigid tunnel walls, the shock arrives at the end of the tunnel in 0.83 ms

as compared with 0.96 ms when the tunnel walls are allowed to respond to the internal

pressure; this compares with > 4.0 ms in the MARVEL experiment (the last datum for

MARVEL was 3.98 ms at 119.05 m).

Figure 2. Computed shock position as a function of time compared with

experimental data. Calculations are for the case where wall heating

is ignored (β = 0).

Effect of Energy Transport to the Tunnel Walls on Shock TOA

Equations (1)-(15) describe an adiabatic system, wherein energy transported to the tun-

nel walls is returned via ablated wall mass. When α = 0, however, no ablation occurs;

in this case the energy is lost from the tunnel system. Figure 3 compares the computed

shock TOA, (for the cases when β = 1 in eq. (11)), with (α = 1) and without (α = 0)

ablation, to the calculation in Figure 2, with β = 0, and with the experimental results.

In these calculations, and all that follow, tunnel wall motion is taken into account via

equations (14) and (15).

Ignoring ablation for the moment, it is observed that the shock TOA at the end of the

tunnel (EOT) increases from 0.96 ms to 1.02 ms when energy transport to the tunnel
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walls is allowed, i.e., there is virtually no change in the shock velocity, which is still far

in excess of that experimentally observed.

Figure 3. Computed shock position as a function of time with (β = 1) and

without (β = 0) wall heating and with (α = 1) and without (α = 0)

mass ablation. The symbols show the experimental data.

When the energy transport is fully converted to ablated wall mass and instantaneously

mixed with the tunnel flow, the comparison with experiment is improved, with the TOA

increasing to 2.81 ms, but this still lags the data. One possible source of error is the

opacity data, for which there is little experimental validation in the range of interest.

Moreover, there are apparently several versions of LEOS opacity tables currently in use

and a cursory check of the one we have been using for air, at the low end of this range

(T=1.5 eV), showed that the Rosseland opacities were up to three orders of magnitude

higher than those obtained from another extant version of LEOS.

Effect of Opacity on Shock TOA

Since there are very few experimental data and the theoretical models for opacity in the

range of interest (1 < T < 30 eV, 10−3 < ρ < 10−1 g/cm3) are not considered accurate,
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figure 4 shows the effect on the shock TOA of including an opacity multiplier, κ in

equation (12), defined by: Kr = κ Kr LEOS.

Figure 4. Computed shock position as a function of time for variable

opacity multiplier, κ, and for emissivity, ε = 1. The symbols

show the experimental data.

In this and subsequent figures, β is taken to be unity. Although there is no reason to

believe that a simple multiplier will account for any opacity errors, it is seen that as

κ decreases by decades from 1 to 10−3, the computed TOA at the EOT agrees much

better with the experimentally observed value, although agreement with the shock ve-

locity profile is still poor. Also shown on the figure is the solution obtained when the

emissivity coefficient takes the limiting black body value of unity. This value might be

approached if turbulent transport from the core flow to the wall were to diminish the

radial temperature gradient established by the diffusion of radiant energy. In this case,

the shock TOA is substantially retarded with respect to that of the data. As seen in the

figure, the shock has moved only 96.4 m down the 122-m long tunnel by 5 ms, at which

point the calculation was terminated.

We emphasize that there are two uncertainties in the model, the value of the emissivity

coefficient, ε, and that of the mass fraction ablated, α, that actually mixes with the core
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flow. Since heat transfer to the wall is dominated by radiation flow in equation (11),

these two parameters actually appear as a product, ξ = αε, in the equations of motion.

In what follows we examine further the effect of varying this product on the shock TOA.

Effect of Uniform Variation of the Parameter ξ = αε on Shock TOA

Figure 5 shows the shock position as a function of time when ξ is varied over the full

range from 0 to 1. It is observed that as ξ is decreased from 1 to 0.5 the shock TOA at the

end of the tunnel increases slightly and then, as ξ is decreased further to 0.1 and then

0.01, the tunnel-end shock TOA sharply decreases. The reason for the initial increase

in the range 0.5 < ξ ≤ 1 is the greater tunnel surface involved in the ablation process

in this case. When ξ = 1, the extremely high temperatures at the entrance of the tunnel

induce very rapid ablation in this region which, in turn, cools the plasma and inhibits

further ablation downstream. When ξ is decreased to 0.5, the initial ablation is less

rapid, allowing more material from the wall to interact with the plasma at downstream

locations. This effect is eventually offset when ξ is reduced further.

Figure 5. Computed shock position as a function of time with wall heating

(β = 1) and ablation, for fixed values of the parameter ξ = αε.
The symbols show the experimental data.
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The best agreement with the experimentally observed shock arrival time at the end of

the tunnel is seen to be for ξ = 0.01. However, as in the previous figure, agreement with

the shock velocity profile is poor. The data show the shock velocity to initially increase

much more rapidly (in the first 60 m of tunnel) than exhibited in the calculations (except

for ξ = 0), and then decrease much more rapidly (in the remainder of the tunnel). In

the last 10 m, for example, the calculated average shock velocity with ξ = 0.01 was

13.4 km/s, whereas the data indicate the actual value was 7.18 km/s. Moreover, the

rate of deceleration exhibited in the experimental data near the tunnel-end is much

greater.The “instantaneous” end-of-tunnel shock velocity was 2.02 km/s as determined

in the experiment, as compared with 10.8 km/s in the calculation with ξ = 0.01.

Effect of Non-Uniform Variation of the Parameter ξ = αε on Shock TOA

The data suggest that material ablated from the walls does not mix instantaneously

with the plasma in the tunnel. Indeed, there is little reason to expect such behavior. 1D

radiation-coupled hydrodynamic calculations of the region near the wall (radial flow

only) show the time for the ablation products to fill the tunnel, based on the abla-

tion velocity at the wall, to be small compared with the axial transit time of the shock.

Therefore, free-stream turbulent transport must be the main mechanism for moving the

ablation products into the flow. Although we are unable to model this process with the

STUN code (since one of the basic assumptions in our simplified approach was that the

flow in the tunnel is strictly axial), we can easily implement a non-uniform mixing algo-

rithm. The results displayed in figure 5 suggest a pressure dependence for the mixing

rate that would require longer times for mixing when the pressure in the tunnel is high

than when the pressure is low. After some trial and error, we found that the function:

ξ = min (
c1 + c2/pn

p
,1) (17)

where c1 = 2.3 × 10−3 GPa, c2 = 1., n = 6, and p is in GPa, gives a reasonably good

representation of the experimental data. Figure 6 plots the calculated shock position

as a function of time when eq. (17) is used. It is observed that, although the calculation

generally agrees with the experimental results, the calculated final shock velocity is still

too high. Nevertheless, the non-uniform mixing simulation closely approximates the

data over most of the tunnel length.

Figure 7 compares the pressure, density, temperature, and particle velocity profiles in

the tunnel at the time when the shock just arrives at the closed end for the two cases:

β = 0 (no energy transport to the walls) and β = 1 with the parameter, ξ, defined by

equation (17), as represented in figure 6. In the former case, as noted in figure 3, shock
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arrival at the EOT occurs at a time of 0.96 ms, compared with 3.6 ms in the latter case.

Figure 6. Computed shock position as a function of time with wall heating

and ablation and the parameter, ξ, defined by equation (17).

The addition of the ablated mass causes the temperature at the end of the tunnel to

drop from 36 to 2.2 eV and the particle velocity from 83 to 11.5 km/s. At 3.6 ms, the

overall ablated mass in the non-uniform mixing case was 30% in excess of the initial

source mass (device plus canister) and more than 20 times the initial mass of air in the

tunnel. At this same time, the cavity radius, R, had grown to 4.97 m, almost 10 times

the initial tunnel radius, and was still expanding at a rate of 700 m/s.

Figure 8 depicts the pressure and impulse per unit area experienced by the closed end-

of-tunnel (EOT) for the 2 cases discussed above in figures 6 and 7. The peak pressure of

34.1 GPa for β = 0 compares with the value of 1.62 GPa for β = 1, non-uniform mixing

and parameterized emissivity, and the impulse applied to the EOT wall is similarly

greater. Clearly, in an actual tunnel complex, mass ablation from the walls will have a
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major impact on the response and resistance of any blast doors that are employed.

Figure 7. Computed pressure, density, temperature and particle velocity profiles

when the shock has arrived at the end of the tunnel for the cases

β = 0 and β = 1 and the parameter, ξ, defined by equation (17).
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Figure 8. Computed pressure and impulse per unit area on the closed

end-of-tunnel as a function of time from shock arrival for

the cases β = 0 and β = 1 and the parameter, ξ, defined by

equation (17).

CONCLUDING REMARKS

We have shown that there are two significant areas of uncertainty that need clarifica-

tion before accurate ab initio modeling of bomb-in-tunnel scenarios will be possible.

First, experiments and/or improvements in theoretical models are needed to provide

accurate opacities for air and other relevant source region material in the so-called

’low-temperature’ regime, i.e., 1 < T < 30 eV and 10−4 < ρ < 1 g/cm3. Second, a better

understanding of the mechanism of turbulent transport of ablated material from the

tunnel wall boundary layer is required.

Despite these limitations, we have demonstrated that a relatively simple model can

account for the shock velocity measurements that were obtained in the MARVEL

event. This model has been incorporated into a ’1-3/4D’ hydrocode called S(phere

and) TUN(nnel) that permits detailed evaluation of the environment in the tunnel as

a function of time. Moreover, the STUN code has provided insight into the modeling

requirements for more accurate (2D/3D) representation of the ablation and turbulent

mixing processes that must have occurred in the event.

There are two improvements that should be made to increase the usefulness of the

code for scaling and effects studies. First, provision should be made to account for
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multiple blast doors that might be placed in an actual tunnel complex. (In the STUN

context, a blast door would simply be a Lagrangian mass point that functions like a

burst diaphragm, i.e., a rigid wall of the appropriate areal density that releases once a

threshold pressure has built up on the upstream face). Next, account should be taken of

nonlinear tunnels, i.e., tunnels with sharp bends, since these are likely to be employed as

momentum traps to minimize damage in case of attack. Such bends are easily handled

in the STUN context by employing a quasi-rigid wall reservoir zone at the bend location,

which aligns the velocity vector of the tunnel flow with the wall vector and provides a

pressure accumulator to account for the concomitant momentum loss. Both of these

modifications will be implemented in the near future.
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